
MobilisGroups: Location-based Group Formation in Mobile Social Networks

Robert Lübke, Daniel Schuster, Alexander Schill
Computer Networks Group

Technische Universität Dresden
Dresden, Germany

robert.luebke@mailbox.tu-dresden.de, daniel.schuster@tu-dresden.de, alexander.schill@tu-dresden.de

Abstract—Location restrictions in Mobile Social Networks
are often used to realize the notion of places as well as for
proximity-based friend or interest matching. In this work,
we extend this by the ability to create and manage groups
with location and time restrictions regarding their visibility
and ability to be joined. Its main contribution is the design
and reference implementation of the reusable MobilisGroups
service as part of the Mobilis platform, an XMPP-based service
environment for developers of mobile social software. Location-
based group formation furthermore links the physical and the
virtual world by creating incentives to be at a certain place at
a certain time and complements the two approaches mentioned
above.

Keywords-social networks; group formation; XMPP; social
software; mobile computing; Android

I. INTRODUCTION

Mobile Social Networks (MSN) supporting location-based
interaction among persons like Foursquare [1], Gowalla [2]
and Facebook Places [3] are getting more and more popular
for users of high-end mobile phones like the iPhone or
Android phones. Meanwhile, there is a growing interest in
the research area of mobile social software leading to a
number of innovative functionality not yet available in com-
mercial MSNs like peer-to-peer friend-of-friend detection
in VENETA [4] or integration of multiple sensors like in
CenceMe [5].

The Mobilis project [6] tries to support developers of
such mobile social software with a reusable toolkit providing
functionality like direct and group communication, import
of contacts from existing social networks, location sharing,
proximity detection, media sharing as well as shared editing
of XML objects.

In this paper we focus on another facet of the Mobilis
platform, i.e., the creation, management and usage of groups.
While groups are now an integral part of commercial so-
cial network services, there are only a few systems like
Urbiflock [7] and Socialaware [8] exploiting location context
to establish groups. We build upon these approaches to create
our group management service for the Mobilis platform.
While MobilisGroups is presented here as part of the bigger
research effort of Mobilis to support developers of mobile
social software, there is also a new aspect of MobilisGroups
worth discussing in this paper: It supports temporal as well
as spatial restrictions for the visibility of groups and ability

to be joined. Up to our knowledge, there is currently no
other system supporting this functionality.

Why should such restrictions be useful? Spatial restric-
tions already prove their usefulness for the notion of places
as used in Foursquare [1]. They provide an incentive for
users to be at a physical place to login and interact with
other nearby users. Time restrictions may optionally extend
this to give an incentive to be at a certain place at a certain
time.

In the following, we first discuss scenarios and require-
ments of location-based group formation (Section II). Back-
ground and related work is discussed in Section III. We
define our architecture and protocols in Section IV. This
concept was implemented in a running prototype as shown
in Section V.

II. SCENARIOS AND REQUIREMENTS

We envision two main scenarios that can benefit from
location-based group formation. The first scenario is an event
scenario where a BarCamp with 100 or more participants
takes place at a certain location in a city. The organizer of
the BarCamp creates an event group that starts being visible
within the city 4 weeks before the event. So users passing
by the BarCamp location will see the event group on the
map. Participants arriving the day before will already see
an icon of the event group and use it to find the correct
location of the BarCamp. Joining the group is only possible
inside or around the building (spatial restriction) on the day
the BarCamp takes place (time restriction). Participants use
the group to look at other participant’s profiles or to leave
messages during the event. After the event the group remains
active and enables sharing of pictures or other media as well
as contacting other BarCamp participants.

A second type of scenario is to build long-living location-
based communities like a community of tenants living in
the same big multi-apartment building. One of the tenants
creates a group for the floor he lives in which is only visible
and may be joined right at the place of the house within a
short range. Other tenants using the app could see the new
group on the map and join it. Optionally, this could require
a confirmation by the group owner. Again, people can see
each others’ profiles, try to make contact using messages
and group chat or share media files. This scenario may



be extended by in-door positioning based on WLAN signal
strength.

As can be seen in the two scenarios, the process of group
creation and group management (Req 1) is essential and
thus it is our main functional requirement. It covers creating
new groups and events, updating and deleting own groups
and inviting other users to a group. Furthermore, the service
has to suggest groups (Req 2) to the user based on the user’s
current location, but also based on the group memberships of
the user’s friends. Moreover groups should be able to have
geographical limits and time restrictions (Req 3) concerning
visibility and ability to be joined. A permanent chat room
should exist for every group (Req 4), so members can
easily communicate with each other. As the main goal of
the application is supporting the user to socialize, it must be
possible to see other group members’ profiles and add them
as friends (Req 5).

Groups in our scenarios are rather static as they are created
explicitly and tied to a specific location. Such static groups
with fixed location can be complemented by dynamic groups
created based on user interests and/or proximity of users
such as in Urbiflock [7]. Thus we mention dynamic group
management as additional requirement (Req 6) which is not
yet realized by MobilisGroups. This could be added later
using one of the existing approaches described in the next
section.

III. BACKGROUND AND RELATED WORK

MobilisGroups is part of the Mobilis platform [6], [9],
a framework built on top of the eXtensible Messaging and
Presence Protocol XMPP [10] to ease the development of
pervasive social computing applications. Up to now, we are
supporting services for presence, session establishment and
direct real-time communication, proximity detection, media
sharing and shared editing of XML objects. A running
XMPP server is needed to provide the basic presence and
communication functionality while our own Mobilis Ser-
vices run as XMPP clients connected to the XMPP server.
Our client applications are currently all implemented on the
Android platform while XMPP as an open XML protocol
makes it easy to also support other mobile platforms in the
future.

MobilisGroups is meant to be a component to establish
location-based groups as part of Mobile Social Networking
(MSN) applications (also called Pervasive Social Network-
ing (PSN) [11]). We thus further investigate on the role of
location, places and groups in recent MSN research.

The notion of location plays an important role in many
MSN applications. Often there is some proximity-based
matching of people to people like in PeopleTones [12],
MobiClique [13] or VENETA [4], which can be done
either at a server or using P2P technologies like short-range
communication (e.g., Bluetooth). Beyond proximity, there
can also be matching of location-dependent requests and

offers like in PeopleNet [14], a matching of activities of
nearby users like in [15] or even collection and distribution
of complex user status (e.g., “dancing at a party with
friends”) like in CenceMe [5]. P3 Systems [16] go one
step further and describe a framework for linking people-to-
people-to-geographical places. While this is already close to
our intention, it does not yet support our notion of groups
with a defined location and location-dependent properties.

The notion of places can be found in a number of
popular commercial MSNs like Foursqare [1], Gowalla [2]
or Facebook Places [3]. Visitors of places are able to leave
messages, to earn points or even become the virtual mayor
of a place. Thus places already include a special type of
group, i.e., the list of persons that already visited the place
in some time period (e.g., within the last 6 months).

Research work using the notion of groups can be found in
the Cluestr [17] system which quickly clusters contacts from
a personal social network to form groups like coworkers,
family and friends. Graph clustering algorithms are used
to find the clusters based on the finding that groups are
highly interlinked. SocialAware [8] establishes groups based
on proximity. One of the demo applications is SocialAware-
Tunes where users meet in front of a jukebox. The jukebox
recognizes the users’ Facebook IDs using Bluetooth con-
nectivity, loads the profiles and tries to establish a playlist
that matches all of the group participants’ preferences.
Urbiflock [7] is a framework to manage dynamic user groups
based on user profiles and physical proximity. The user can
create groups such as “nearbyBadmintonGroup” consisting
of all users or friends interested in playing badminton that
are currently in proximity to the user. Such functionality is
complementary to the type of location-based groups we are
targeting with MobilisGroups.

Both approaches - places as well as dynamic groups - can
also be used as a starting point to create a static group tied
to a specific location. We will demonstrate this for places
later on by using the Foursquare API while dynamic groups
are not yet supported but could be added accordingly. In
the following, we will have a closer look at the design and
implementation of MobilisGroups.

IV. DESIGN OF MOBILISGROUPS

A. Architecture

To realize MobilisGroups, we integrated it in the cen-
tralized architecture of the Mobilis platform [6], [9] with
a dedicated Grouping Service as can be seen in Figure 1.
Regarding the question of how centralized a MSN should be,
Mokhtar et al. [15] define three degrees of MSN middleware
deployment, i.e., fully centralized, semi-distributed and fully
distributed. They show that the centralized solution is the
best choice for MSNs in terms of user satisfaction [11]
while this approach clearly has the disadvantage of the need
to build a fixed, reliable infrastructure first. Nevertheless,
it would be interesting to see how our Mobilis services



Android Java

MXA
(Mobilis XMPP
On Android)

Smack (XMPP Client Library)

XMPP Services
FileTransfer Service

ServiceDiscovery Service
MultiUserChat Service

PublishSubscribe Service

Mobilis Client Services
Social Network Service

IP
C

XMPP

Openfire
XMPP-
Server XMPP

Mobilis
Server

Mobilis Services
Coordinator Service

Grouping Service
UserContext Service

Content Service
Repository Service

Shared Editing Service

Smack
(XMPP Client Library)

Mobilis Applications

MobilisXHunt

MobilisGroups MobilisMedia

MobilisTrader

MobilisMapDraw MobilisBuddy

Mobilis Beans

Mobilis Beans

Figure 1. Integration of MobilisGroups components (red) into the existing Mobilis architecture.

could be realized in a semi-distributed or fully distributed
deployment as this implies additional mechanisms to deal
with incomplete information and inconsistency.

As already mentioned, we use XMPP for communica-
tion between clients and server. XMPP provides feature-
rich communication and service management protocols and
functions and has therefore been selected as the basis of the
service platform.

Android has been selected as the best fitting mobile device
platform for software development in the project. For the
actual communication we chose the Smack XMPP client
library [18] and adapted it to be used on the Android system.
Like all other Mobilis applications, MobilisGroups uses
inter process communication to access the MXA application
(Mobilis XMPP on Android), that manages the XMPP
communication.

Regarding the server side, the services running on the
Mobilis Server act as XMPP clients themselves, thus an
off-the-shelf XMPP server like OpenFire can be used as
mediator. This requires clients and the Mobilis services to
have their own XMPP ID (e.g., alice@xmpp.org/NexusOne,
mobilis@xmpp.org/Grouping) to be able to exchange mes-
sages via the XMPP server.

B. Service Discovery

To set up communication between a mobile client and the
Grouping Service, the XMPP ID of the Grouping Service
first has to be determined. We use the XMPP Service
Discovery extension (XEP-0030 [19]) for this purpose. As
already described in [6], the Coordinator Service, which has
a well-known XMPP ID, works like a service directory and
returns the ID of the Grouping Service. This is done using

so-called info/query (IQ) messages. IQ messages are an
RPC-like mechanism within XMPP allowing for any XML
request/response pairs to be transported directly to an XMPP
client using his ID.

Any Android app willing to use location-based group
formation runs on the mobile client and invokes the
MobilisGroups service. It communicates with the Mobilis
Server by sending XMPP messages with the help of MXA
library. On the server side, the Grouping Service receives
these messages that are forwarded by the XMPP server.
The Grouping Service manages all groups and memberships
using a database. Additional services can be used for shar-
ing location (User Context Service) and media (Repository
Service and Content Service) to realize the functionality in
our application scenarios. These services are described in
[6].

C. Communication Protocol

For the actual communication protocol we do not use
existing standardized XMPP extensions but define our own
extension with the help of custom IQ (info/query) messages.
In the following, one example of these custom IQs is
discussed.

For creating a new group the client uses the GroupCreate
IQ. It contains all important data of the group, e.g., the group
name, a description, a homepage, an address, the geograph-
ical position, defined restrictions and privacy information.
The structure of an example GroupCreate IQ is shown in
Figure 2 on the left side.

If a client wants to create a new group, a GroupCreate
IQ with the type set has to be sent to the Grouping Service
where the group is created and saved in a database. As a



Figure 2. GroupCreate IQ and communication flow.

response the client receives an IQ with the type result which
contains the URI of the newly created group. If the client
is unknown to the Grouping Service, then a new member is
created and further information about the client is requested
with another custom IQ, the so-called GroupMemberInfo IQ.

The full communication flow between client and server in
the group creation process is shown in Figure 2 on the right
side.

D. Integration of external social networks

As already mentioned in Section III, places provided by
Gowalla, Foursquare or Facebook Places are a good starting
point for location-based groups. All these social networks
provide their data to external applications via application
programming interfaces. Among others, there is a request
for venues near a given geographical position, which can be
used by MobilisGroups. These venues or places can then be
used as a starting point to create a location-based group or
event.

To meet the requirement of integrating external social
networks, we included a Foursquare overlay, which the user
can select to activate it. We chose Foursquare for various
reasons: At the moment it has more users than Gowalla
and thus more recorded venues and a better geographical
precision. Furthermore, it does not require an authorization
before using the API, which makes it easier to use.

The integration of external social networks is imple-
mented in an overlay architecture. Every social network has
its own layer, which can overlay the normal map view if the
user activates it. This approach leads to a better extensibility.
A correspondent layer for other networks can be added
easily.

The social network integration is strictly realized on the
client side, because sending requests to the Foursquare API
and parsing the lightweight JSON formatted response is not

too complex for a mobile client. Another possible approach
is establishing a corresponding social network service in the
MobilisServer, that manages the usage of multiple social
network APIs for the mobile client.

V. IMPLEMENTATION

To prove the feasibility of our approach, we implemented
a running prototype using Android and Java on the client
side as well as Java on the server side. Figure 3 shows some
of the Android Activities from the graphical user interface of
the prototype. In the center one can see the main view of the
application: The map view. Groups and items from external
social networks are visualized on the map. From this view
the user can start all other main functions by clicking the
correspondent menu entries.

If the application is started for the first time, the XMPP
Server Preferences (bottom right) and application settings
(bottom) have to be checked. The map view can be cus-
tomized by choosing which layers should be displayed
(bottom left). Clicking the entry My Friends opens the
XMPP contact list (top left). Additional personal information
is shown by selecting an XMPP buddy. This also includes the
group memberships of the correspondent contact. Choosing
My Groups in the map view’s menu opens a list of all own
group memberships (top right). All administrative functions
are accesible here. It is possible to show details, leave,
update and delete a group, open the group’s multi-user
chat room and invite a friend to a group. Besides the
special group attributes the Group Information view lists
all registered members. By choosing a member, further
information is presented to the user again. This approach
enables browsing the group and member data.

To create a new group the user has to tap the exact position
on the map and a new dialog for group creation shows up.
All neccessary and additional data of the group has to be



Figure 3. Screenshots from the user interface of MobilisGroups.

specified here and the group can be created. Assumed that all
spatial and temporal restrictions are fulfilled, a user walking
by can see it on the map, look at the group profile, use the
group’s multi-user chat room and join it.

Thus our prototype fulfills all the requirements mentioned
in Section II except dynamic groups which is left for further
study. We also tested the scalability of our approach by
automatically creating 1000 groups on a 5 km square area
with a visibility radius between 20 m and 200 m each.
With our simple client-server setup on two machines this
took about 30 ms per group to be created successfully. In a
second test we simulated several random walks within the
predefined square sending a request for new groups every
10 m. Not surprisingly, the processing time for a group query
depends linearly on the number of groups in the visible area
and ranges between 51 ms (100 groups visible) to 495 ms
(1000 groups visible).

VI. CONCLUSION

The main idea of this paper is to provide a reusable
location-based group management service for developers
of Pervasive Social Computing applications. These groups
should support time and location restrictions on visibility
and ability to be joined to provide incentives to be at a cer-
tain place at a certain time in the physical world. We showed
a client-server architecture and XMPP-based protocols for
this purpose. The protocols and prototype implementation
are freely available on our Sourceforge page [9] and can be
reused by other applications. It is one of the building blocks
of our Mobilis platform with the goal to support developers
of mobile social software on the Android platform. We are
constantly refining and extending the framework and want
to encourage the community to use it for their own research
projects.

As we only proved feasibility of the approach by imple-



mentation and small-scale evaluation, there remains work to
be done to further evaluate location-based group formation
with real users. The question remains open, if location and
time-restricted groups will be adopted by users of mobile
social networks. Another interesting direction of future
research is to link the two worlds of static and dynamic
groups. As dynamic group creation exploits user proximity,
the location information already available in MobilisGroups
can also be used to create groups of nearby users.

ACKNOWLEDGEMENT

We want to thank the many contributors of the
Mobilis platform for their conceptual and implementation
work. Alexandre Skyrme, Thomas Springer and Markus
Endler provided help regarding related work. Daniel Esser,
Maximilian Walther and the anonymous reviewers helped to
improve this article with their feedback.

REFERENCES

[1] foursquare, Inc., “foursquare,” http://foursquare.com/, 2010.

[2] Gowalla, Inc., “Gowalla,” http://gowalla.com/, 2010.

[3] Facebook, Inc., “Facebook Places,”
http://www.facebook.com/places/, 2011.

[4] Marco von Arb, Matthias Bader, Michael Kuhn, and Roger
Wattenhofer, “VENETA: Serverless Friend-of-Friend Detec-
tion in Mobile Social Networking,” in 4th IEEE International
Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), Avignon, France, 2008.

[5] Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Ronald
Peterson, Hong Lu, Mirco Musolesi, Shane B. Eisenman,
Xiao Zheng, and Andrew T. Campbell, “Sensing Meets
Mobile Social Networks: The Design, Implementation and
Evaluation of the CenceMe Application,” in The 6th ACM
Conference on Embedded Networked Sensor Systems (Sen-
sys), Raleigh, NC, USA, 2008.

[6] Daniel Schuster, Thomas Springer, and Alexander Schill,
“Service-based Development of Mobile Real-time Collab-
oration Applications for Social Networks,” in First Inter-
national Workshop on Communication, Collaboration and
Social Networking in Pervasive Computing Environments
(PerCol), Mannheim, Germany, 2010.

[7] Andoni Lombide Carreton, Dries Harnie, Elisa Gonzalez
Boix, Christophe Scholliers, Tom Van Cutsem, and Wolf-
gang De Meuter, “Urbiflock: An experiment in Dynamic
Group Management in Pervasive Social Applications,” in
First International Workshop on Communication, Collabora-
tion and Social Networking in Pervasive Computing Environ-
ments (PerCol), Mannheim, Germany, 2010.

[8] Charles M. Gartrell, “SocialAware: Context-Aware Multime-
dia Presentation via Mobile Social Networks,” Master Thesis,
University of Colorado, Department of Computer Science,
2008.

[9] TU Dresden, “Mobilis - A Service Platform for Collaborative
Social Applications,” http://mobilisplatform.sourceforge.net/,
2010.

[10] “XMPP Standards Foundation,” http://xmpp.org, 2011.

[11] S. Ben Mokhtar and L. Capra, “From pervasive to social
computing: algorithms and deployments,” in ICPS ’09: Pro-
ceedings of the 2009 international conference on Pervasive
services, London, United Kingdom, 2009.

[12] K. A. Li, T. Y. Sohn, S. Huang, and W. G. Griswold,
“Peopletones: a system for the detection and notification
of buddy proximity on mobile phones,” in MobiSys ’08:
Proceeding of the 6th international conference on Mobile
systems, applications, and services, Breckenridge, CO, USA,
2008.

[13] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and
C. Diot, “MobiClique: middleware for mobile social network-
ing,” in WOSN ’09: Proceedings of the 2nd ACM workshop
on Online social networks, Barcelona, Spain, 2009.

[14] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “PeopleNet:
engineering a wireless virtual social network,” in MobiCom
’05: Proceedings of the 11th annual international conference
on Mobile computing and networking, Cologne, Germany,
2005.

[15] S. B. Mokhtar, L. McNamara, and L. Capra, “A middleware
service for pervasive social networking,” in M-PAC ’09:
Proceedings of the International Workshop on Middleware
for Pervasive Mobile and Embedded Computing, Urbana
Champaign, Illinois, 2009.

[16] Quentin Jones and Sukeshini A. Grandhi, “P3 Systems:
Putting the Place Back into Social Networks,” IEEE Internet
Computing, vol. 9, pp. 38–46, 2005.

[17] R. Grob, M. Kuhn, R. Wattenhofer, and M. Wirz, “Cluestr:
mobile social networking for enhanced group communica-
tion,” in GROUP ’09: Proceedings of the ACM 2009 interna-
tional conference on Supporting group work, Sanibel Island,
Florida, USA, 2009.

[18] Ignite Realtime, “Smack API,”
http://www.igniterealtime.org/projects/smack/, 2011.

[19] Joe Hildebrand, Peter Millard, Ryan Eatmon, and Peter Saint
Andre, “XEP-0030: Service Discovery,” XMPP Standards
Foundation, Tech. Rep., 2008.


